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Parametric Ward-Takahashi identity in disordered systems and the integral identity associated
with the Calogero-Sutherland model
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By utilizing the symmetric property known as the Ward-Takahashi identity in disordered systems, we
explore the novel symmetry relations which hold in one-dimensional systems with inverse square interaction
(the Calogero-Sutherland mogleThe identities emerge totally from the algebraic structure of the model. They
show that the dynamical correlators are connected with one another, involving the higher-order integrals of
motion. We obtain the result for the coupling strengths1/2, 1, and 2, and conjecture that a similar relation
may hold for arbitrary rationak. [S1063-651X97)11404-Q

PACS numbsgs): 05.30.Fk, 05.45tb

[. INTRODUCTION In this paper, we utilize the mapping to examine the sym-
metric relation associated with the dynamical correlations in

The Calogero-Sutherland mod@SM) describesN fer- CSM. To do so, we extend the Ward-Takahashi identity in
mions located on a ring of the perimeterwith pairwise disordered systems to incorporate the parametric correlations
inverse square interactio4,2]. The Hamiltonian is given With the help of the supermatrix method. In contrast to the
by Jack polynomial technique, this method is suitable to inves-

tigate physical quantities in the bulk limit. It also transpar-
B2 (\—1) e ently_provides_ symmet_ric properties to dynamical correlation
(1) functions, which we will explore.

1
= 2
HCSM_ZmZ I = sinf(ery))’

Il. WARD-TAKAHASHI IDENTITY

wherep;=—ifdlor;, rij=r;—r;, and¢=mx/L. (The usual Our starting point is the Ward-Takahashi identity in quan-
conventions=1 andm=1/2 is adopted hereaft¢The ex- tum dots or RMT. It asserts that, for the retarded and ad-
act ground state wave function of the model is given by avanced Green functior@E'Az(E—HiiO)*l, the identity
Jastrow formill; - J-sirr\(¢rij), and excited states are known to ,

be expressed in terms of the symmetric polynomials called Tr[WF 2mi
the Jack polynomial§3]. While there is a long history of B17E A(E—Ep)

exactly solvable models in one-dimensional many-body sys- e :
tems, this model is the only family known so far where its is satisfied in disordered systems, wharés the mean level

. : : spacing and the overbar denotes the averaging over impurity
dynamical gorrelano_n funcnpns can be evaluated e.XaCtly'configurations or random matrices. Equati@nresults from
The dynamical de_ns_lty_-densny correlat(cp(r,r)p(0,0)} N the unitarity of the system, so it should be possible to extend
the the(jrmodynallm|T I|m|;fwas/ev[alu?ted anl? lytically If or Inte- s identity to incorporate the parametric dependence. Al-
ger and rational values of=p/q [4,5]. A striking simplicity : : o
of the result emerges after taking the thermodynamic Iimitthough Eq.(2) itself can be proved straightforwardly by in

. : X serting the complete diagonalized basis betw&h and
which was attained through a lot of mathematical effort. GA, such a route of derivation is no longer achieved when

The Calogero-_SutherIand model IS closely connected WltQhey carry different external parameters, since we can make
the random matrix theoryRMT), which has successfully no common diagonalized basis. To extend E.to such a

been applied to describe the universal characteristics in qua%—
i

@

. . ituation, we should take account of the unitarity of the sys-
tum chaotic systems, such as compound nuclei, quantum biJ-

liards, and quantum dots. In the thermodynamic limit, the em explicitly. To do so, we resort to the supermatrix method

Jastrow form of the wave function immediately enables the[lo]’ which translates the unitarity of the system into the

. o . symmetry of the advanced and retarded components. When
ground state average to be identified with the average ove .
) . . We present the results in the context of CBE4js. (25) and
Wigner-Dyson ensembles of random matrices for couplin

strengths\ = /2= 1/2 (orthogonal, 1 (unitary), and 2(sym- g(28) below], it will be found that the derived identities take

. ; uite simple forms, but still give nontrivial relations even for
plectic. The spectral correlator was generalized to accoung1 : -
e free fermion casen=1).

for spectra that disperse as a function of some external tun-

able parameter. Surprisingly, it was found that this paramet- IIl. SUMMARY OF THE CORRELATORS
ric two-level correlator is identical to the dynamical density- IN RMT AND CSM

density correlator of CSM6-8]. Though this “mapping”

between RMT and CSM is available only for the three spe- A. Parametric correlators of RMT

cial values of the coupling strengths, it can serve as a rich 1o make our discussion concrete, take the Hamiltonian
source of various useful insights in CSk&ee, e.g., Ref9]

for recent work in this direction. H(X)=Hy+ X, 3
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whereH, is a random matrix belonging to one of the Dyson

ensembles, and is a fixed traceless member of the same 11 (Xi_xi’)Z)\.Hl (yj—yjn*
ensemble. By use of the retarded and advanced Green func- FOM{x,yi)= = 1<
tions bl
IT Gitny?
GRR(r,r) =(r[[E-H(X)=i0] "), (4) . ;
we define the following two kinds of universal correlation Xiljl GP(Xi))\711_1:[1 en(y)™ 1 (12

functionsk(w,x) andn(w,x) [11]:
1 A2 In the supermatrix formulatiorfs (\|{x;,y;}) emerges as a
k(w,X)=— =+ _zf drdr’GT(r,r)G’;(r’,r’), (5) Jacobian for the integration which is completely determined
2 2m from the structure of the underlying graded-symmetric space.

2
n(w,X)= %f drdr’G?(r,r’)G’z*(r’,r), (6) B. Connection with CSM
The direct connection between the parametric correlations
where the suffixi =1,2 denotes &;,X;) ands is the level 0f RMT and dynamical correlations of CSM is provided
degeneracy which takes account of the Kramers doublets fo¥hen we substitutes—r and x*/2— 7 (7 is the Euclidean
the symplectic case. Rescaled parameters for the energy afithe) [6—8]. When we make this replacementkfw,x), it
the external parameter were introduced to reveal the univefmmediately reproduces the dynamical density-density corr-

sality by elator{p(r,7)p(0,0)) for A\=1/2, 1, and 2, i.e.,
w=(E;—E,)/A, x2=C(0)(X;—X,)?, (p(r,7)p(0,0)=7[Q*cogQr)e *7]. (13
C(O)=A‘2W The other functiom(w,x) is found to be related to the dy-
n .

namical current-current correlator of CMd],

For the orthogonal, unitary, and symplectic ensembles, ) ) P _Er
the analytical answers fok(w,x) and n(w,x) have been (j(r,7)j(0,0)=1[E“cogQr)e ="]. (14
obtained[11,12. To present the results simultaneously for _. . .
all three ensembles, the integral variables introduced in Re§|nceithhe Ward-Takahashi identity Eq(2) states
[5] are convenient. By assigning=p/q=1/2 for the or- 1 E€~?]=—-1/(imw), it characterizes the current-current
thogonal,\ = p/q= 1 for the unitary, and = p/q=2 for the correlator of CSM rather than the density-density correlator.

symplectic symmetriesp(andq are coprimey they are pre-
sented by IV. DERIVATIONS AND RESULTS

Now we show how we can extend and derive the Ward-
Takahashi identity to the case for finite or dynamical cor-
00— Ex22 relations. To avoid the notational confusion, we usex) of
n(w,x)=1[Ee 1. 8 RzMT instead of ¢,7) of CSM, but by substitutingsp—r and
. . . . x‘/2— 7, we can obtain the corresponding expressions for
The integration] - - -] is defined by CSM on each step. We follow Reffl3,14 to derive the
Ward-Takahashi identity within the framework of the super-
matrix method. The basic underlying idea is to translate the

k(w,X)ZI[QZeiwaEXZ/Z]’ (7)

a ., P
7---1=c]] f dx I1 f dy;F(N{xy; D (-
i=1J0 j=1J0

) unitarity of the system into the hyperbolic symmetry be-
(9)  tween the advanced and retarded componé8tse Eq.(20)
below]
g P Consider the generating function ffw,x) andn(w,x)
Q=(2m) 2’1 Xi+j§_:l y,}, (108 in the supermatrix nonlinear-model formulatior 10],

q Z,=(exd ST(QAI)])o, (15

p
> eP<xi>+j§l m(y;)} (10

=1

E=(2m)?

where Q is the 8<8 supermatrix satisfyingd’=1 and its
explicit structure of@ can be found in Ref.10]. The super-
ep(X)=x(x+\), and ey(y)=Ay(1—y). The numerical trace STr is defined by STr(:)= Tr[(ke—kg)(---)],
constantC and the form factoF (\|{x;,y;}) were given by  wherek,, is a projector either onto the Bose spaae<(B) or
onto the Fermi space=F). The source matrid is chosen
1 as @ andb arec number
)\2D(q—1)[‘2(p)FQ()\)FD(X) ( $

C= : , J=(a+b3;)Ak,. (16

q p _
2a2ptg! [] T2(p—n(i—1)]] rz( 1- Q)
=1 =1 A

Note that we are allowed to use either one to generate
(11 k(w,x) andn(w,x). A and3; are 8<8 matrices defined by
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A 1, O s 0 14) 1< > iﬂ'w( 2 A2 (24
= = : 1 = = - :
0 -1,)’ “7l1, o (17 pldve 7 (2 8 Q2Q3Q
The averagd - - - ), denotes the integralDQ(- - -)e Fl<9.  After some straightforward but rather lengthy evaluation of
Corresponding ta = p/q=1/2 (orthogonal, 1 (unitary), and  the supermatrix integration for all three values\gfwe ob-
2 (symplectig, F[ Q] is equal to tain the result which can be summarized as follgwestoring

w—T andx?/2—7):
2,2

6 STH QA)Z] . (19

i Tw N

FLQI=p| ——STHQA)~ 1
—=T[(—IrE+7l5)e " F7], (25)

When we set the infinitesimal rotation on the saddle-point
manifold as Q— Q'=(1-6T)Q(1+ 48T), Z; remains in-  where we define
variant because of the integration over the manifgd
Hence q
l,=(27)" E Xi (X4 N) (2% + N )" 2

5zJ=<e3T“~”ST{([J,Q]— P A0
p

2 2.2 > +>\”-1j21 yj(1—y)(1—2y))""2|. (26)
Q

pmeX
J’_

{(AQ)2—<QA)2})5T

Equation(25) serves as the extension of the Ward-Takahashi
=0. (190  identity Eq.(2), and consists of the main result of the paper.
We can go on to the higher-order identity from EZ1),
Although this identity holds for arbitrary infinitesimal rota- on principle, but the evaluation of the integration becomes
tions 8T, we particularly choosed=B or F) harder and harder to complete. Among the second-order
polynomials ofa andb, we can confirm that only the coef-
STk, 3. (200 ficient of a'b? gives the nontrivial relation:

The choice reflectdJ(1,1) symmetry of the advanced and i o
retarded components within the bosonic or fermionic sector. _< a1)%+(92)%) o= <_q1(q2)2—
This hyperbolic symmetry is responsible for producing the 4 o)

Ward-Takahashi identity in the supermatrix method. After (27)
substituting Eq(20) for 6T, we have

N2m2x?

CI1Q2Q3>

However, as we see from E3b), this will depend on the
da-pinrw p2a?x values of\ (p andq) as well as the choice af=B or F.
<(DQ1+ q,+ qs)eaql+sz> =0, Hence for each value of, we have two integral identities.
4 8q From these, we can seek an interesting form of the identity
(21)  which seems to be the direct extension of E2F), which
can be presented by

where we define

d,=STik,AQ], (229 [[(QZJF a-p_ iQr_ET}
p
q;=STHk,2;AQ], (22b) 1 _
=TI (—irl 3+ 71 4)e' %" E™]. (29
0a= STk, 21(AQ)2]. (229 P

Note that the coefficients of E§28) are deduced to repro-

Note that the correlatdk(w,Xx) andn(w,Xx) are related by duce the actual results af=1/2. 1. and 2.

5 {()%) o= Lt k(w,x), (233 V. DISCUSSION
15 ((d2) )Q +n(w,X). (23b There are known multiple integral identities which are
associated with CSM. They are called the Selberg integrals
Depending on the choice & or ke, we have a positive or [15], and their generalization by Dotsenko and FatgEs]
negative sign in front oh(w,Xx). are particularly useful. For instance, they were used to deter-
From Eq.(21), we can readily derive a sequence of inte- mine the correct normalization factor of the correlation func-
gral identities by comparing each coefficient of polynomialstions [17]. We also mention that the Dotsenko-Fateev inte-
of a andb. Not all of them, however, produce nontrivial gral can provide a systematic means to evaluate a certain
integral identities. We can show that the coefficients ofcorrelation function which showed up in disordered systems
ah® and a’b® vanish trivially. The first nontrivial identity [18]. However, we emphasize that those integral formulas
comes from the coefficient af’b?, i.e., are not powerful enough to explain E@®5), because they
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can be applied only when the integrands are polynomials.

The simple form of the identity Eq25) may suggest that
these known multiple integral formulas be extended som

how for the case involving an exponential factor such as

e'Q""B7 We remark that the derived integral identity Eq.
(25) is not trivial at all from the mathematical point of view,
even for the simplest case of the free fermiar<1), though
we can convince ourselves of its correctness, e.g., by chec
ing the asymptotics, or evaluating for smalexpansion.

The quantitiesl,, (for n=3) correspond to the higher-
order integrals of motion of CSM, as well § andl,=E.
To see this transparently, identify the velocitigs(v_j) for
particles(holeg by

vi=vs(1+2%/N), (299

vi=vg(1-2y)), (29b)
where vg=m\ipg/m=27\ is the sound velocity[19].
Since the velocity(rapidity) is the conserved quantity of
CSM,

q P

Jo=m> vl +my > v ] (30)
=1 i=1

should act as the integrals of motion,

l,=J,/2—27%\2J,_,. In Ref. [20], a few kinds of the
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VI. CONCLUSION

In conclusion, we have derived the Ward-Takahashi iden-
tity for the parametric correlations of RMT. By doing so, it
was shown that there exist novel integral identities which are
associated with the dynamical correlations of CSM. It is re-
marked that they amount to a new generalization of the Sel-
berg integration. As was seen from the derivation in the con-
text of RMT, this is the manifestation of the unitarity of the
system, i.e., the hyperbolic symmetry of the advanced and
retarded components. However, its nature and implication in
CSM is not so clear at present. Since our arguments rely
heavily on the mapping between RMT and CSM, we can
make no decisive statement on the validity of the derived
integral identities foarbitrary rational values ofA. We can,
however, suggest two possible scenarios: E2S). and (28)
are (i) true only forA=1/2,1,2, or(ii) true for all rational
values of\. If the latter were true, it would remain as a
future challenge how the integral identities E¢25) and
(28) can be deduced from the Jack polynomials, or \itie
algebra, which is known as the symmetry of C$24].
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