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Parametric Ward-Takahashi identity in disordered systems and the integral identity associated
with the Calogero-Sutherland model

Nobuhiko Taniguchi
Department of Physical Electronics, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739, Japan

~Received 4 November 1996!

By utilizing the symmetric property known as the Ward-Takahashi identity in disordered systems, we
explore the novel symmetry relations which hold in one-dimensional systems with inverse square interaction
~the Calogero-Sutherland model!. The identities emerge totally from the algebraic structure of the model. They
show that the dynamical correlators are connected with one another, involving the higher-order integrals of
motion. We obtain the result for the coupling strengthsl51/2, 1, and 2, and conjecture that a similar relation
may hold for arbitrary rationall. @S1063-651X~97!11404-0#

PACS number~s!: 05.30.Fk, 05.45.1b
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I. INTRODUCTION

The Calogero-Sutherland model~CSM! describesN fer-
mions located on a ring of the perimeterL with pairwise
inverse square interactions@1,2#. The Hamiltonian is given
by

HCSM5
1

2m(
i
pi
21

\2l~l21!

m (
i, j

f2

sin2~fr i j !
, ~1!

wherepi52 i\]/]r i , r i j5r i2r j , andf5p/L. ~The usual
convention\51 andm51/2 is adopted hereafter.! The ex-
act ground state wave function of the model is given by
Jastrow form) i, jsin

l(frij), and excited states are known
be expressed in terms of the symmetric polynomials ca
the Jack polynomials@3#. While there is a long history o
exactly solvable models in one-dimensional many-body s
tems, this model is the only family known so far where
dynamical correlation functions can be evaluated exac
The dynamical density-density correlator^r(r ,t)r(0,0)& in
the thermodynamic limit was evaluated analytically for in
ger and rational values ofl5p/q @4,5#. A striking simplicity
of the result emerges after taking the thermodynamic lim
which was attained through a lot of mathematical effort.

The Calogero-Sutherland model is closely connected w
the random matrix theory~RMT!, which has successfully
been applied to describe the universal characteristics in q
tum chaotic systems, such as compound nuclei, quantum
liards, and quantum dots. In the thermodynamic limit, t
Jastrow form of the wave function immediately enables
ground state average to be identified with the average o
Wigner-Dyson ensembles of random matrices for coupl
strengthsl5b/251/2 ~orthogonal!, 1 ~unitary!, and 2~sym-
plectic!. The spectral correlator was generalized to acco
for spectra that disperse as a function of some external
able parameter. Surprisingly, it was found that this param
ric two-level correlator is identical to the dynamical densi
density correlator of CSM@6–8#. Though this ‘‘mapping’’
between RMT and CSM is available only for the three s
cial values of the coupling strengths, it can serve as a
source of various useful insights in CSM.~See, e.g., Ref.@9#
for recent work in this direction.!
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In this paper, we utilize the mapping to examine the sy
metric relation associated with the dynamical correlations
CSM. To do so, we extend the Ward-Takahashi identity
disordered systems to incorporate the parametric correlat
with the help of the supermatrix method. In contrast to t
Jack polynomial technique, this method is suitable to inv
tigate physical quantities in the bulk limit. It also transpa
ently provides symmetric properties to dynamical correlat
functions, which we will explore.

II. WARD-TAKAHASHI IDENTITY

Our starting point is the Ward-Takahashi identity in qua
tum dots or RMT. It asserts that, for the retarded and
vanced Green functionsGE

R,A5(E2H6 i0)21, the identity

Tr@GE1
R GE2

A #5
2p i

D~E12E2!
~2!

is satisfied in disordered systems, whereD is the mean level
spacing and the overbar denotes the averaging over imp
configurations or random matrices. Equation~2! results from
the unitarity of the system, so it should be possible to exte
this identity to incorporate the parametric dependence.
though Eq.~2! itself can be proved straightforwardly by in
serting the complete diagonalized basis betweenGR and
GA, such a route of derivation is no longer achieved wh
they carry different external parameters, since we can m
no common diagonalized basis. To extend Eq.~2! to such a
situation, we should take account of the unitarity of the s
tem explicitly. To do so, we resort to the supermatrix meth
@10#, which translates the unitarity of the system into t
symmetry of the advanced and retarded components. W
we present the results in the context of CSM@Eqs.~25! and
~28! below#, it will be found that the derived identities tak
quite simple forms, but still give nontrivial relations even f
the free fermion case (l51).

III. SUMMARY OF THE CORRELATORS
IN RMT AND CSM

A. Parametric correlators of RMT

To make our discussion concrete, take the Hamiltonia

H~X!5H01XF, ~3!
4116 © 1997 The American Physical Society
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55 4117PARAMETRIC WARD-TAKAHASHI IDENTITY IN . . .
whereH0 is a random matrix belonging to one of the Dys
ensembles, andF is a fixed traceless member of the sam
ensemble. By use of the retarded and advanced Green f
tions

GE,X
R,A~r,r8!5^r u@E2H~X!6 i0#21ur8&, ~4!

we define the following two kinds of universal correlatio
functionsk(v,x) andn(v,x) @11#:

k~v,x!52
1

2
1

D2

2p2E drdr8G1
R~r,r!G2

A~r8,r8!, ~5!

n~v,x!5
sD2

2p2E drdr8G1
R~r,r8!G2

A~r8,r!, ~6!

where the suffixi51,2 denotes (Ei ,Xi) and s is the level
degeneracy which takes account of the Kramers doublets
the symplectic case. Rescaled parameters for the energy
the external parameter were introduced to reveal the uni
sality by

v[~E12E2!/D, x2[C~0!~X12X2!
2,

C~0!5D22@]En~X!/]X#2.

For the orthogonal, unitary, and symplectic ensemb
the analytical answers fork(v,x) and n(v,x) have been
obtained@11,12#. To present the results simultaneously f
all three ensembles, the integral variables introduced in R
@5# are convenient. By assigningl5p/q51/2 for the or-
thogonal,l5p/q51 for the unitary, andl5p/q52 for the
symplectic symmetries (p andq are coprimes!, they are pre-
sented by

k~v,x!5I@Q2eiQv2Ex2/2#, ~7!

n~v,x!5I@EeiQv2Ex2/2#. ~8!

The integrationI@•••# is defined by

I@•••#[C)
i51

q E
0

`

dxi)
j51

p E
0

1

dyjF~lu$xi ,yj%!~••• !,

~9!

Q5~2p!F(
i51

q

xi1(
j51

p

yj G , ~10a!

E5~2p!2F(
i51

q

eP~xi !1(
j51

p

eH~yj !G , ~10b!

eP(x)5x(x1l), and eH(y)5ly(12y). The numerical
constantC and the form factorF(lu$xi ,yj%) were given by

C5

l2p~q21!G2~p!Gq~l!GpS 1l D
2p2p!q!)

i51

q

G2
„p2l~ i21!…)

j51

p

G2S 12
j21

l D ,
~11!
nc-

or
nd
r-

s,

f.

F~lu$xi ,yj%!5

)
i, i 8

~xi2xi 8!
2l )

j, j 8
~yj2yj 8!

2/l

)
i , j

~xi1lyj !
2

3)
i51

q

eP~xi !
l21)

j51

p

eH~yj !
1/l21. ~12!

In the supermatrix formulation,F(lu$xi ,yj%) emerges as a
Jacobian for the integration which is completely determin
from the structure of the underlying graded-symmetric spa

B. Connection with CSM

The direct connection between the parametric correlati
of RMT and dynamical correlations of CSM is provide
when we substitutev→r and x2/2→t (t is the Euclidean
time! @6–8#. When we make this replacement ink(v,x), it
immediately reproduces the dynamical density-density c
elator ^r(r ,t)r(0,0)& for l51/2, 1, and 2, i.e.,

^r~r ,t!r~0,0!&5I@Q2cos~Qr !e2Et#. ~13!

The other functionn(v,x) is found to be related to the dy
namical current-current correlator of CSM@9#,

^ j ~r ,t! j ~0,0!&5I@E2cos~Qr !e2Et#. ~14!

Since the Ward-Takahashi identity Eq.~2! states
I@EeiQv#521/(ipv), it characterizes the current-curre
correlator of CSM rather than the density-density correla

IV. DERIVATIONS AND RESULTS

Now we show how we can extend and derive the Wa
Takahashi identity to the case for finitex, or dynamical cor-
relations. To avoid the notational confusion, we use (v,x) of
RMT instead of (r ,t) of CSM, but by substitutingv→r and
x2/2→t, we can obtain the corresponding expressions
CSM on each step. We follow Refs.@13,14# to derive the
Ward-Takahashi identity within the framework of the supe
matrix method. The basic underlying idea is to translate
unitarity of the system into the hyperbolic symmetry b
tween the advanced and retarded components.@See Eq.~20!
below.#

Consider the generating function fork(v,x) andn(v,x)
in the supermatrix nonlinear-s model formulation@10#,

ZJ5^exp@STr~QJ!#&Q , ~15!

whereQ is the 838 supermatrix satisfyingQ251 and its
explicit structure ofQ can be found in Ref.@10#. The super-
trace STr is defined by STr(•••)5 Tr@(kF2kB)(•••)#,
whereka is a projector either onto the Bose space (a5B) or
onto the Fermi space (a5F). The source matrixJ is chosen
as (a andb arec numbers!

J5~a1bS1!Lka . ~16!

Note that we are allowed to use either one to gene
k(v,x) andn(v,x). L andS1 are 838 matrices defined by
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L5S 14 0

0 214
D , S15S 0 14

14 0 D . ~17!

The averagê•••&Q denotes the integral*DQ(•••)e2F[Q] .
Corresponding tol5p/q51/2 ~orthogonal!, 1 ~unitary!, and
2 ~symplectic!, F@Q# is equal to

F@Q#5pH ipv

4
STr~QL!2

lp2x2

16
STr~QL!2J . ~18!

When we set the infinitesimal rotation on the saddle-po
manifold asQ→Q85(12dT)Q(11dT), ZJ remains in-
variant because of the integration over the manifoldQ.
Hence

dZJ5 K eSTrQJSTrF S @J,Q#2
pipv

4
@L,Q#

1
p2p2x2

8q
$~LQ!22~QL!2% D dTG L

Q

50. ~19!

Although this identity holds for arbitrary infinitesimal rota
tions dT, we particularly choose (a5B or F)

dT}kaS1 . ~20!

The choice reflectsU(1,1) symmetry of the advanced an
retarded components within the bosonic or fermionic sec
This hyperbolic symmetry is responsible for producing t
Ward-Takahashi identity in the supermatrix method. Af
substituting Eq.~20! for dT, we have

K S bq11 4a2pipv

4
q21

p2p2x2

8q
q3Deaq11bq2L

Q
50,

~21!

where we define

q15STr@kaLQ#, ~22a!

q25STr@kaS1LQ#, ~22b!

q35STr@kaS1~LQ!2#. ~22c!

Note that the correlatork(v,x) andn(v,x) are related by

1
16 ^~q1!

2&Q511k~v,x!, ~23a!

1
16 ^~q2!

2&Q56n~v,x!. ~23b!

Depending on the choice ofkB or kF , we have a positive or
negative sign in front ofn(v,x).

From Eq.~21!, we can readily derive a sequence of int
gral identities by comparing each coefficient of polynomi
of a and b. Not all of them, however, produce nontrivia
integral identities. We can show that the coefficients
a0b0 anda1b0 vanish trivially. The first nontrivial identity
comes from the coefficient ofa0b1, i.e.,
t

r.

r

-

f

1

p
^q1&Q5 K ipv

4
~q2!

22
l2p2x2

8
q2q3L

Q
. ~24!

After some straightforward but rather lengthy evaluation
the supermatrix integration for all three values ofl, we ob-
tain the result which can be summarized as follows~restoring
v→r andx2/2→t):

1

p
5I@~2 irE1tI 3!e

iQr2Et#, ~25!

where we define

I n[~2p!nF(
i51

q

xi~xi1l!~2xi1l!n22

1ln21(
j51

p

yj~12yj !~122yj !
n22G . ~26!

Equation~25! serves as the extension of the Ward-Takaha
identity Eq.~2!, and consists of the main result of the pap

We can go on to the higher-order identity from Eq.~21!,
on principle, but the evaluation of the integration becom
harder and harder to complete. Among the second-o
polynomials ofa andb, we can confirm that only the coef
ficient of a1b1 gives the nontrivial relation:

1

p
^~q1!

21~q2!
2&Q5 K ipv

4
q1~q2!

22
l2p2x2

8
q1q2q3L

Q
.

~27!

However, as we see from Eq.~23b!, this will depend on the
values ofl (p andq) as well as the choice ofa5B or F.
Hence for each value ofl, we have two integral identities
From these, we can seek an interesting form of the iden
which seems to be the direct extension of Eq.~25!, which
can be presented by

11IF SQ21
q2p

p
EDeiQr2EtG

5
1

p2
I@~2 irI 31tI 4!e

iQr2Et#. ~28!

Note that the coefficients of Eq.~28! are deduced to repro
duce the actual results ofl51/2, 1, and 2.

V. DISCUSSION

There are known multiple integral identities which a
associated with CSM. They are called the Selberg integ
@15#, and their generalization by Dotsenko and Fateev@16#
are particularly useful. For instance, they were used to de
mine the correct normalization factor of the correlation fun
tions @17#. We also mention that the Dotsenko-Fateev in
gral can provide a systematic means to evaluate a ce
correlation function which showed up in disordered syste
@18#. However, we emphasize that those integral formu
are not powerful enough to explain Eq.~25!, because they
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55 4119PARAMETRIC WARD-TAKAHASHI IDENTITY IN . . .
can be applied only when the integrands are polynomi
The simple form of the identity Eq.~25! may suggest tha
these known multiple integral formulas be extended som
how for the case involving an exponential factor such
eiQr2Et. We remark that the derived integral identity E
~25! is not trivial at all from the mathematical point of view
even for the simplest case of the free fermion (l51), though
we can convince ourselves of its correctness, e.g., by ch
ing the asymptotics, or evaluating for smallt expansion.

The quantitiesI n ~for n>3) correspond to the higher
order integrals of motion of CSM, as well asQ and I 25E.
To see this transparently, identify the velocitiesv i ( v̄ j ) for
particles~holes! by

v i5vs~112xi /l!, ~29a!

v̄ j5vs~122yj !, ~29b!

where vs5pl\r0 /m52pl is the sound velocity@19#.
Since the velocity~rapidity! is the conserved quantity o
CSM,

Jn5m(
i51

q

v i
n1mh(

j51

p

v̄ j
n ~30!

should act as the integrals of motion, as do
I n5Jn/222p2l2Jn22. In Ref. @20#, a few kinds of the
higher-order integrals of motion were investigated. Desp
the similarity of their appearance, the direct connection w
I n in Eq. ~26! is missing at present.
s.

v

s.

-
s

k-

s

e
h

VI. CONCLUSION

In conclusion, we have derived the Ward-Takahashi id
tity for the parametric correlations of RMT. By doing so,
was shown that there exist novel integral identities which
associated with the dynamical correlations of CSM. It is
marked that they amount to a new generalization of the S
berg integration. As was seen from the derivation in the c
text of RMT, this is the manifestation of the unitarity of th
system, i.e., the hyperbolic symmetry of the advanced
retarded components. However, its nature and implication
CSM is not so clear at present. Since our arguments
heavily on the mapping between RMT and CSM, we c
make no decisive statement on the validity of the deriv
integral identities forarbitrary rational values ofl. We can,
however, suggest two possible scenarios: Eqs.~25! and ~28!
are ~i! true only for l51/2,1,2, or~ii ! true for all rational
values ofl. If the latter were true, it would remain as
future challenge how the integral identities Eqs.~25! and
~28! can be deduced from the Jack polynomials, or theW
algebra, which is known as the symmetry of CSM@21#.
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